

Overcoming the Safety Challenges of Aldose Reductase Inhibition: Development of AT-001 for Diabetic Cardiomyopathy

Disclosures

Riccardo Perfetti, MD, PhD
Employee of Applied Therapeutics
Shareholder of Applied Therapeutics, Sanofi

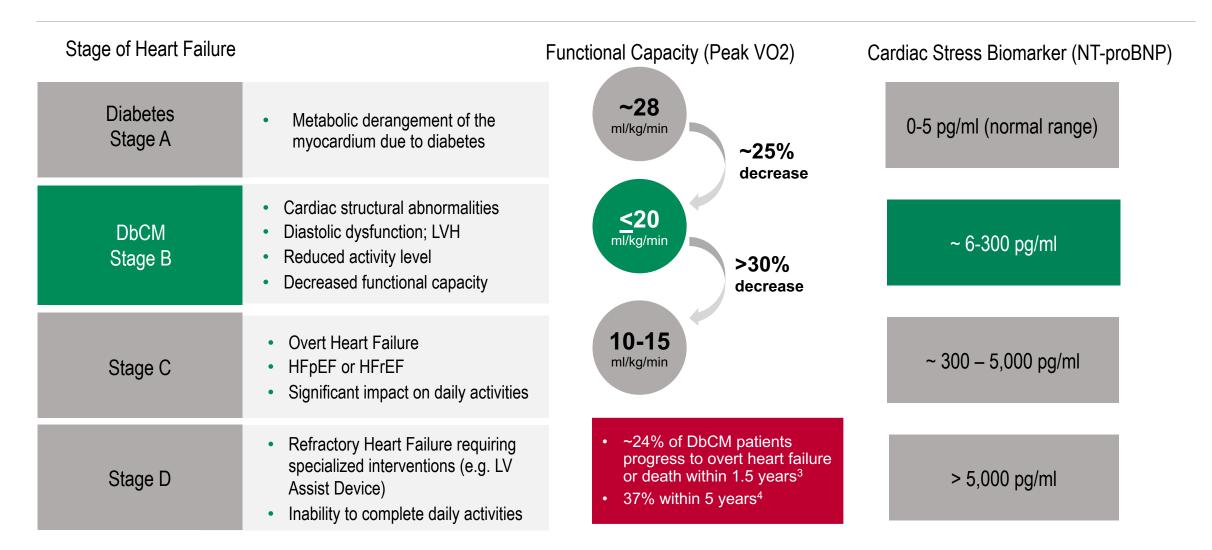
Definition of Diabetic Cardiomyopathy (DbCM)¹

- Abnormal cardiac structure and/or performance
 - Resulting from diabetes-associated metabolic alterations
 - In the absence of coronary artery disease (CAD) as well as hypertensive, valvular or congenital heart disorder
- Progresses to overt heart failure (HF)^{2,3}

Myocardial dysfunction

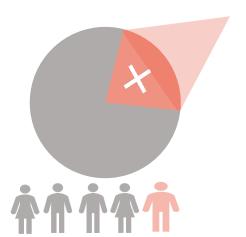
Myocardial dysfunction

Diastolic dysfunction, Systolic dysfunction,

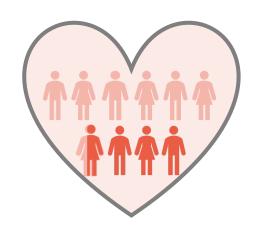

LV hypertrophy & concentric remodeling

Overt Heart Failure

Hospitalization, death



Diabetic Cardiomyopathy as a Form of Stage B Heart Failure¹⁻⁴


Diabetic Cardiomyopathy: A High Unmet Medical Need

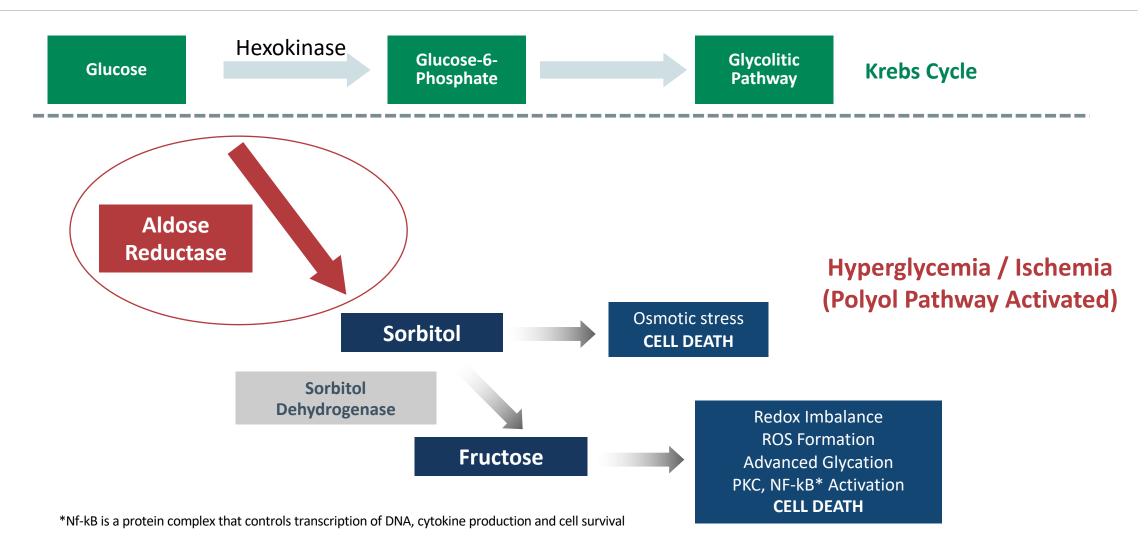
Approximately, **17-24**% of patients with diabetes have DbCM in the absence of other forms of heart disease. ^{1,2}

~77 M patients worldwide have DbCM³

- ~ 8.0M in North America
- ~ 10.0M in Europe

- ~24% of DbCM patients
 progress to overt heart failure
 or death within 1.5 years⁴
- 37% within 5 years⁵

- Patients with diabetes are counseled on HF risk reduction:
 - Lifestyle modification
 - Hypertension
 - Dyslipidemia


- Hyperglycemia
- Albuminuria

No Treatment for DbCM

- No therapies target the metabolic derangement responsible for DbCM and subsequent worsening to overt HF
- Heart Failure treatment is only initiated upon onset of clinical symptomatology (stage C heart failure)

Pathogenesis of DbCM & Hyperactivation of Polyol Pathway^{1,2}

First Generation Aldose Reductase Inhibitor Zopolrestat (Pfizer)

zopolrestat

- First generation Aldose Reductase Inhibitor (zopolrestat) demonstrated clinical efficacy in Diabetic Cardiomyopathy¹
- Hepatotoxicity was observed in the development program (presumably due to off target competitive binding with Aldehyde Reductase in liver)
- Clinical development was discontinued

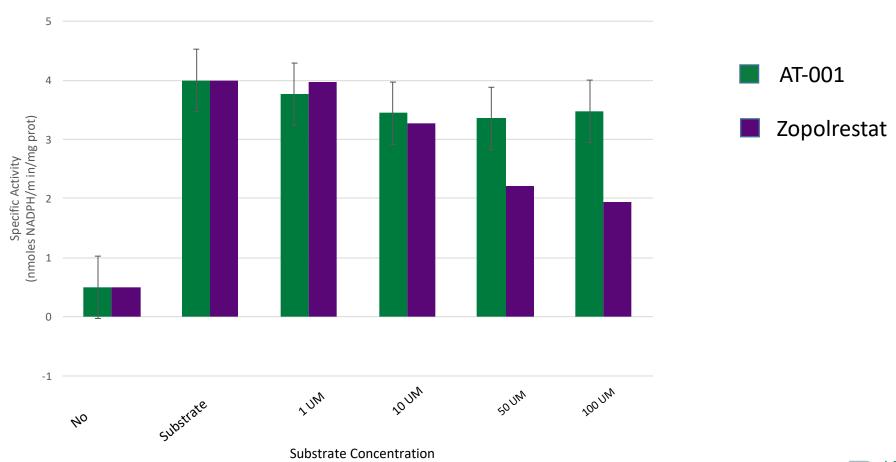
AT-001: A Next Generation Highly Selective Aldose Reductase Inhibitor for Treatment of Diabetic Cardiomyopathy

AT-001

- AT-001 was developed through rational drug design, using the geometric parameters of the active site of the Aldose Reductase enzyme determined via X-ray crystallography.
- Optimal target selectivity for Aldose Reductase and minimization of potential off-target activity with Aldehyde Reductase was achieved.
- Aldehyde Reductase plays an important role in detoxification mechanisms in the liver.
 Minimization of off-target activity is critical to ensure safety.

AT-001 Increased Affinity for Aldose Reductase vs. Zopolrestat

Compound	Structure	IC ₅₀	MTD in animals	Tissue Penetration (in rats)			
				System ic/ Heart	Nerve	Retina	CNS
AT-001	O N N S CF_3	30pM	>2,000mg/kg	√	>	✓	Х
zopolrestat	O N S CO_2H	10nM	100mg/kg	✓	✓	X	Х



No AT-001 Off-Target Binding

- Eurofins Panlabs Safety Screen Panel (consisting of 87 primary molecular targets including 13 enzyme and 74 binding assays) was used to evaluate potential off target binding activity of AT-001
- No off-target binding activity (defined as ≥50% inhibition or stimulation for biochemical assays) was observed

Zopolrestat (But Not AT-001) Inhibits Aldehyde Reductase

Conclusions

- AT-001 is logarithmically more potent than zopolrestat in inhibiting Aldose Reductase
- The unique structure and activity of AT-001 provide selectivity for Aldose Reductase and avoid off-target inhibition of Aldehyde Reductase
- The in vitro safety of this agent together with the positive safety data from the phase 1/2 program, support the ongoing pivotal study in DbCM

